Idea

$1 \geq m \geq 0$

(
Decision variable: $d=\Delta x(a-b)$
d is an integer
$d<0$ use upper pixel
$d>0$ use lower pixel

Incremental Form

- More efficient if we look at d_{k}, the value of the decision variable at $\mathrm{x}=\mathrm{k}$

$$
\begin{aligned}
& d_{\mathrm{k}+1}=\mathrm{d}_{\mathrm{k}}-2 \Delta \mathrm{y}, \quad \text { if } \mathrm{d}_{\mathrm{k}}>0 \\
& \mathrm{~d}_{\mathrm{k}+1}=\mathrm{d}_{\mathrm{k}}-2(\Delta \mathrm{y}-\Delta \mathrm{x}), \quad \text { otherwise }
\end{aligned}
$$

-For each x, we need do only an integer addition and a test
-Single instruction on graphics chips

Fast Lines - Derivation by Midpoint Method

- Simplifying assumptions: Draw line between points $(0,0)$ and (a, b) with slope m between 0 and 1 (i.e. line lies in first quadrant).
- General formula for line is $\mathbf{y = m} \mathbf{m}+\mathbf{B}$ where
- m is the slope of the line and
- \mathbf{B} is the \mathbf{y}-intercept.
- From our assumptions $\mathbf{m}=\mathrm{b} / \mathrm{a}$ and $\mathbf{B}=0$.
> $y=(b / a) x+0$
$\Rightarrow f(x, y)=b x-a y=0$ is an equation for the line.

- For lines in the first quadrant, given one pixel on the line, the next pixel is to the right (E) or to the right and up (NE).
- Having turned on pixel P at $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$, the next pixel is
- NE at $\left(x_{i}+1, y_{i}+1\right)$ or
- E at $\left(x_{i}+1, y_{i}\right)$.
- Choose pixel closer to the line $f(x, y)=b x-a y=0$.

Fast Lines (cont.)

- The midpoint between pixels E and NE is ($x_{i}+1, y_{i}+1 / 2$).
- Let e be the "upward" distance between the midpoint and where the line actually crosses between E and $N E$.
- If e is positive the line crosses above the midpoint and is closer to NE.
- If e is negative, the line crosses below the midpoint and is closer to E .
, To pick the correct point we only need to know the sign of e.

The Decision Variable

$$
\begin{aligned}
& f\left(x_{i}+1, y_{i}+1 / 2+e\right)=0 \text { (point on line) } \\
&=b\left(x_{i}+1\right)-a\left(y_{i}+1 / 2+e\right) \\
& \quad=b\left(x_{i}+1\right)-a\left(y_{i}+1 / 2\right)-a e \\
&=f\left(x_{i}+1, y_{i}+1 / 2\right)-a e \\
& \rightarrow f\left(x_{i}+1, y_{i}+1 / 2\right)=a e
\end{aligned}
$$

Let $\mathbf{d}_{i}=f\left(x_{i}+1, y_{i}+1 / 2\right)=\mathbf{a e} ; \mathbf{d}_{i}$ is known as the decision variable.
Since $a \geq 0, \underline{d}_{i}$ has the same sign as e.
Therefore, we only need to know the value of d_{i} to choose between pixels E and $N E$. If $d_{i} \geq 0$ choose NE, else choose E.

But, calculating d_{i} directly each time requires at least two adds, a subtract, and two multiplies -> too slow!

Decision Variable calculation

Algorithm:

Calculate d_{0} directly, then for each $\mathrm{i}>=0$:
if $d_{i} \geq 0$ Then

$$
\text { Choose NE }=\left(x_{i}+1, y_{i}+1\right) \text { as next point }
$$

$d_{i+1}=f\left(x_{i+1}+1, y_{i+1}+1 / 2\right)=f\left(x_{i}+1+1, y_{i}+1+1 / 2\right)$
$=b\left(x_{i}+1+1\right)-a\left(y_{i}+1+1 / 2\right)=f\left(x_{i}+1, y_{i}+1 / 2\right)+b-a$

$$
=d_{i}+b-a
$$

else

$$
\begin{aligned}
& \text { Choose } E=\left(x_{i}+1, y_{i}\right) \text { as next point } \\
& \begin{aligned}
d_{i+1} & =f\left(x_{i+1}+1, y_{i+1}+1 / 2\right)=f\left(x_{i}+1+1, y_{i}+1 / 2\right) \\
& =b\left(x_{i}+1+1\right)-a\left(y_{i}+1 / 2\right)=f\left(x_{i}+1, y_{i}+1 / 2\right)+b \\
& =d_{i}+b
\end{aligned}
\end{aligned}
$$

Knowing d_{i}, we need only add a constant term to find $\mathrm{d}_{\mathrm{i}+1}$!

Fast Line Algorithm

The initial value for the decision variable, d_{0}, may be calculated directly from the formula at point $(0,0)$.

$$
d_{0}=f(0+1,0+1 / 2)=b(1)-a(1 / 2)=b-a / 2
$$

Therefore, the algorithm for a line from $(0,0)$ to (a, b) in the first quadrant is:

```
x = 0;
y = 0;
d = b - a/2;
for(i = 0; i < a; i++) {
    Plot(x,y); }
    if (d \geq0) { }
        x = x + 1;
        y = y + 1;
        d = d + b - a;
    }
```

Note that the only non-integer value is $a / 2$. If we then multiply by 2 to get $d^{\prime}=2 d$, we can do all integer arithmetic. The algorithm still works since we only care about the sign, not the value of d.

Bresenham's Line Algorithm

We can also generalize the algorithm to work for lines beginning at points other than $(0,0)$ by giving x and y the proper initial values. This results in Bresenham's Line Algorithm.

```
{Bresenham for lines with slope between 0 and 1}
    a = ABS (xend - xstart);
    b = ABS (yend - ystart);
    d = 2*b - a;
    Incr1 = 2*(b-a);
    Incr2 = 2*b;
    if (xstart > xend) {
        x = xend;
        y = yend
    }
    else {
        x = xstart;
        y = ystart
    }
```

```
        for (i = 0; i<a; i++){
```

 for (i = 0; i<a; i++){
 Plot(x,y);
 Plot(x,y);
 x = x + 1;
 x = x + 1;
 if (d \geq 0) {
 if (d \geq 0) {
 y = y + 1;
 y = y + 1;
 d = d + incr1;
 d = d + incr1;
 }
 }
 else
 else
 d = d + incr2;
 d = d + incr2;
 }
 }
 }

```

\section*{Optimizations}
- Speed can be increased even more by detecting cycles in the decision variable. These cycles correspond to a repeated pattern of pixel choices.
- The pattern is saved and if a cycle is detected it is repeated without recalculating.


Realtime 3D Computer Graphics / Virtual Reality - WS 2005/2006 - Marc Erich Latoschik

\section*{Line Rendering References}

Bresenham, J.E., "Ambiguities In Incremental Line Rastering," IEEE Computer Graphics And Applications, Vol. 7, No. 5, May 1987.

Eckland, Eric, "Improved Techniques For Optimising Iterative DecisionVariable Algorithms, Drawing Anti-Aliased Lines Quickly And Creating Easy To Use Color Charts," CSC 462 Project Report, Department of Computer Science, North Carolina State University (Spring 1987).

Foley, J.D. and A. Van Dam, Fundamentals of Interactive Computer Graphics, Addison-Wesley 1982.

Newman, W.M and R.F. Sproull, Principles Of Interactive Computer Graphics, McGraw-Hill, 1979.

\section*{Polygon Scan Conversion}
- Scan Conversion = Fill
- How to tell inside from outside
- Convex easy
- Nonsimple difficult
- Odd even test
- Count edge crossings
- Winding number
odd-even fill

\section*{Filling in the Frame Buffer}
- Fill at end of pipeline
- If a point is inside a polygon color it with the inside (polygon) color
- Three approaches:
- Flood fill, Scan line fill, Odd-Even fill
- Polygon type matters:
- Convex polygons preferred, non-convex polygons assumed to have been tessellated
- Shades (colors) have been computed for vertices (Gouraud shading)
- Combine with depth test: z-buffer algorithm
- March across scan lines interpolating shades
- Incremental work small

\section*{Winding Number}
- Count clockwise encirclements of point
\[
\text { winding number = } 1
\]
winding number \(=2\)
- Alternate definition of inside: inside if winding number \(\neq 0\)

\section*{Inside Polygon Test}

Inside test: A point \(P\) is inside a polygon if and only if a scanline intersects the polygon edges an odd number of times moving from \(P\) in either direction.


Problem when scan line crosses a vertex:
Does the vertex count as two points?


Or should it count as one point?


\section*{Max-Min Test}

When crossing a vertex, if the vertex is a local maximum or minimum then count it twice, else count it once.

or


Count twice


Count once


\section*{Polygons}
- A polygon is a many-sided planar figure composed of vertices and edges.
- Vertices are represented by points ( \(x, y\) ).
- Edges are represented as line segments which connect two points, ( \(\mathrm{x}_{1}, \mathrm{y}_{1}\) ) and ( \(\mathrm{x}_{2}, \mathrm{y}_{2}\) ).

- Convex Polygon:
- For any two points \(\mathrm{P}_{1}, \mathrm{P}_{2}\) inside the polygon, all points on the line segment which connects \(P_{1}\) and \(P_{2}\) are inside the polygon.
- All points \(P=u P_{1}+(1-u) P_{2}, u\) in \([0,1]\) are inside the polygon provided that \(P_{1}\) and \(P_{2}\) are inside the polygon.
- Concave Polygon
\(\therefore\) A polygon which is not convex.
- Simple Polygons

Polygons whose edges do not cross.

- Non simple Polygons
- Polygons whose edges cross.
- E.g., two different OpenGL implementations may render non simple polygons differently. OpenGL does not check if polygons are simple.


\section*{Flood Fill}
- Fill can be done recursively if we know a seed point located inside (WHITE)
- Scan convert edges into buffer in edge/inside color (BLACK)
```

flood_fill(int x, int y) {
if(read_pixel (x,y)= = WHITE) {
write_pixel(x,y,BLACK);
flood_fill(x-1, y);
flood_fill(x+1, y);
flood_fill(x, y+1);
flood_fill(x, y-1);
} }

```

\section*{Using Interpolation}

- Fill the polygon 1 scan line at a time
- Determine which pixels on each scan line are inside the polygon - set those pixels to the appropriate value.
- Key idea: Don't check each pixel for "inside-ness". Instead, look only for those pixels at which changes occur.

- \(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}\) specified by lighting equation
- e.g., OpenGL: glColor or by vertex shading
- \(\mathrm{C}_{4}\) determined by interpolating between \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\)
- \(\mathrm{C}_{5}\) determined by interpolating between \(\mathrm{C}_{2}\) and \(\mathrm{C}_{3}\)
- interpolate between \(\mathrm{C}_{4}\) and \(\mathrm{C}_{5}\) along span: bilinear interpolation

\section*{Scan-Line Fill}
- Can also fill by maintaining a data structure of all intersections of polygons with scan lines
- Sort by scan line
- Fill each span


vertex order generated by vertex list

desired order

\section*{Scan-Line Algorithm}

For each scan line:
1. Find the intersections of the scan line with all edges of the polygon.
2. Sort the intersections by increasing \(x\) coordinate.
3. Fill in all pixels between pairs of intersections.

\section*{Problem:}

Calculating intersections is slow.

\section*{Solution:}

Incremental computation / coherence

For scan line number 8 the sorted list of \(x\)-coordinates is \((2,4,9,13)\) ( \(b\) and \(c\) are initially no integers)

Therefore fill pixels with \(x\) coordinates 2-4 and 9-13.


\section*{Filling using line drawings}
- Information about "interior" is missing
- Pixels are choosen which are near the desired line
- Strategy adds some extra pixels which are not located inside the polygon


\section*{Edge Coherence}
- Observation: Not all edges intersect each scanline.
- Many edges intersected by scanline i will also be intersected by scanline i+1
- Formula for scanline \(s\) is \(y=s\), for an edge is \(y=m x+b\)
- Their intersection is
\[
s=m x_{s}+b-->x_{s}=(s-b) / m
\]
- For scanline \(s+1\),
\[
x_{s+1}=(s+1-b) / m=x_{s}+1 / m
\]

\section*{Processing Polygons}
- Polygon edges are sorted according to their minimum / maximum Y.
- Scan lines are processed in increasing (upward) / decreasing (downward) Y order.
- When the current scan line reaches the lower / upper endpoint of an edge it becomes active.
- When the current scan line moves above the upper / below the lower endpoint, the edge becomes inactive.
\(\bigcirc\)

........ Active Edges
Not yet active edges
Finished edge
\(\bar{\Longrightarrow}\) Ignored horizontal edge
- Active edges are sorted according to increasing X. Filling the scan line starts at the leftmost edge intersection and stops at the second. It restarts at the third intersection and stops at the fourth. . . (spans)

\section*{Polygon fill rules}

\section*{(to ensure consistency)}
1. Horizontal edges: Do not include in edge table
2. Horizontal edges: Drawn either on the bottom or on the top.
3. Vertices: If local max or min, then count twice, else count once.
4. Either vertices at local minima or at local maxima are drawn.
5. Only turn on pixels whose centers are interior to the polygon: round up values on the left edge of a span, round down on the right edge

\section*{Polygon fill example}
- The edge table (ET) with edges entries sorted in increasing y and x of the lower end.
- \(y_{\max }\) : max \(y\)-coordinate of edge
- \(\mathrm{x}_{\text {min }}\) : x -coordinate of lowest edge point
- \(1 / \mathrm{m}\) : x-increment used for stepping from one scan line to the next


B (8,1)
\begin{tabular}{|r|l|l|l|l|l|l|l|r|r|}
\hline 19 & NULL & & & & & & & & \\
18 & NULL & & & & & & & & \\
17 & NULL & & & & & & & & \\
16 & NULL & & & & & & & & \\
15 & NULL & & & & & & & & \\
14 & NULL & & & & & & & & \\
13 & NULL & & & & & & & & \\
\hline 12 & -> & 15 & 8 & -2 & \(->\) & 18 & 8 & \(4 / 3\) & NULL \\
\hline 11 & NULL & & & & & & & & \\
10 & NULL & & & & & & & & \\
9 & NULL & & & & & & & & \\
8 & NULL & & & & & & & & \\
7 & NULL & & & & & & & & \\
\hline 6 & \(->\) & 18 & 16 & 0 & NULL & & & & \\
\hline 5 & NULL & & & & & & & & \\
4 & NULL & & & & & & & & \\
\hline 3 & -> & 15 & 2 & 0 & NULL & & & & \\
\hline 2 & NULL & & & & & & & & \\
\hline 1 & -> & 3 & 8 & -3 & \(->\) & 6 & 8 & \(8 / 5\) & NULL \\
\hline
\end{tabular}

\section*{Processing steps}
1. Set y to smallest y with entry in ET, i.e., y for the first non-empty bucket
2. Init Active Edge Table (AET) to be empty
3. Repeat until AET and ET are empty:

1. Move form ET bucket y to the AET those edges whose \(\mathrm{y}_{\text {min }}=\mathrm{y}\) (entering edges)
2. Remove from AET those edges for which \(y=y_{\text {max }}\) (not involved in next scan line), then sort AET (remember: ET is presorted)
3. Fill desired pixel values on scan line \(y\) by using pairs of \(x\)-coords from AET
4. Increment y by 1 (next scan line)
5. For each nonvertical edge remaining in AET, update \(x\) for new \(y\)
scan line 9:


\section*{Aliasing}
- Aliasing is caused by finite addressability of the display.
- Approximation of lines and circles with discrete points often gives a staircase appearance or "Jaggies".
- Ideal rasterized line should be 1 pixel wide

- Choosing best y for each x (or visa versa) produces aliased raster lines

\section*{Aliasing / Antialiasing Examples "Jaggies" \\ "Jaggies" \\ }

\section*{Antialiasing - solutions}
- Aliasing can be smoothed out by using higher addressability.
- If addressability is fixed but intensity is variable, use the intensity to control the address of a "virtual pixel".
- Two adjacent pixels can be be used to give the impression of a point part way between them.
- The perceived location of the point is dependent upon the ratio of the intensities used at each.
- The impression of a pixel located halfway between two addressable points can be given by having two adjacent pixels at half intensity.
- An antialiased line has a series of virtual pixels each located at the proper address.


\section*{Antialiasing by Area Averaging}
- Color multiple pixels for each x depending on coverage by ideal line

\author{
original
}


magnified

\section*{Polygon Aliasing}
- Aliasing problems can be serious for polygons
- Jaggedness of edges
- Small polygons neglected
- Need compositing so color of one polygon does not totally determine color of pixel


All three polygons should contribute to color

\section*{Antialiased Bresenham Lines}
- Line drawing algorithms such as Bresenham's can easily be modified to implement virtual pixels. We use the distance \(\left(e=d_{i} / a\right)\) value to determine pixel intensities.
- Three possible cases which occur during the Bresenham algorithm:


\section*{Clipping and Visibility}
- Clipping has much in common with hiddensurface removal
- In both cases, we are trying to remove objects that are not visible to the camera
- Often we can use visibility or occlusion testing early in the process to eliminate as many polygons as possible before going through the entire pipeline

\section*{Hidden Surface Removal}
- Object-space approach: use pairwise testing between polygons (objects)

partially obscuring

can draw independently
- Worst case complexity \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) for n polygons

\section*{Painter's Algorithm}
- Render polygons a back to front order so that polygons behind others are simply painted over

\(B\) behind \(A\) as seen by viewer


Fill \(B\) then \(A\)

\section*{Depth Sort}
- Requires ordering of polygons first
- O(n \(\log n\) ) calculation for ordering
- Not every polygon is either in front or behind all other polygons
- Order polygons and deal with easy cases first, harder later distance from COP


\section*{Depth sort cases}

\section*{- Easy cases:}
- Lies behind all other polygons (can render):
- Polygons overlap in z but not in either x or y (can render independently):


Polygons

- Hard cases:

Overlap in all directions but can one is fully on one side of the other


cyclic overlap

penetration

\section*{Back-Face Removal (Culling)}
-face is visible iff \(90 \geq \theta \geq-90\) equivalently \(\cos \theta \geq 0\) or \(\mathbf{v} \cdot \mathbf{n} \geq 0\)
-plane of face has form ax + by \(+\mathrm{cz}+\mathrm{d}=0\)

but after normalization \(\mathbf{n}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{\mathrm{T}}\)
-need only test the sign of c
-In OpenGL we can simply enable culling
but may not work correctly if we have nonconvex objects

\section*{Image Space Approach}
- Look at each projector ( nm for an nx m frame buffer) and find closest of \(k\) polygons
- Complexity O(nmk)
- Ray tracing
- z-buffer


\section*{z-Buffer Algorithm}
- Use a depth buffer called the z-buffer to store the depth of the closest object at each pixel found so far
- As we render each polygon, compare the depth of each pixel to depth in z buffer
- If less, place shade of pixel in color buffer and update z buffer
- Efficency:
- If we work scan line by scan line as we move across a scan line, the depth changes satisfy \(\mathrm{a} \Delta \mathrm{x}+\mathrm{b} \Delta \mathrm{y}+\mathrm{c} \Delta \mathrm{z}=0\)
- Along scan line \(\Delta y=0, \Delta z=-a / c \Delta x\) - In screen space \(\Delta x=1\)


\section*{Scan-Line Algorithm}

\section*{- Can combine shading and hsr through scan line algorithm}

scan line i: no need for depth information, can only be in no or one polygon
scan line j: need depth information only when in more than one polygon

\section*{Visibility Testing}
- In realtime applications, eliminate as many objects as possible within the application
- Reduce burden on pipeline
- Reduce traffic on bus
- Partition space with Binary Spatial Partition (BSP) Tree

- Easy example: Consider 6 parallel polygons. The plane of A separates B and C from D, E and F
- Can continue recursively
- Plane of \(C\) separates \(B\) from \(A\)
- Plane of \(D\) separates \(E\) and \(F\)
- Can put this information in a BSP tree - Use for visibility and occlusion testing
```

