
1

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Idea
1 ≥ m ≥ 0

last pixel

candidates

Note that line could have
passed through any
part of this pixel

Decision variable: d = ∆x(a-b)

d is an integer
d < 0 use upper pixel
d > 0 use lower pixel

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Incremental Form

• More efficient if we look at dk, the value of the
decision variable at x = k

dk+1= dk –2∆y, if dk > 0
dk+1= dk –2(∆y- ∆x), otherwise

•For each x, we need do only an integer
addition and a test
•Single instruction on graphics chips

2

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Fast Lines – Derivation by Midpoint Method
• Simplifying assumptions: Draw line between points (0,0) and (a,b) with slope m

between 0 and 1 (i.e. line lies in first quadrant).
• General formula for line is y = mx + B where

• m is the slope of the line and
• B is the y-intercept.
• From our assumptions m = b/a and B = 0.

y = (b/a)x + 0
⇒ f(x,y) = bx - ay = 0 is an equation for the line.

• For lines in the first quadrant,
given one pixel on the line,
the next pixel is to the right (E)
or to the right and up (NE).

• Having turned on pixel P at (xi, yi),
the next pixel is

• NE at (xi+1, yi+1) or
• E at (xi+1, yi).

• Choose pixel closer to the line
f(x, y) = bx - ay = 0.

+x-x

-y

+y

P = (xi ,yi) E = (xi + 1, yi)

NE = (xi + 1, yi + 1)

current
pixel possible

next pixels

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Fast Lines (cont.)
• The midpoint between pixels E

and NE is (xi + 1, yi + ½).
• Let e be the “upward” distance

between the midpoint and where
the line actually crosses between
E and NE.

• If e is positive the line crosses
above the midpoint and is closer
to NE.

• If e is negative, the line crosses
below the midpoint and is closer
to E.
To pick the correct point we only
need to know the sign of e.

(xi +1, yi + ½ + e)
e

(xi +1, yi + ½)

P = (xi ,yi) E = (xi + 1, yi)

NE = (xi + 1, yi + 1)

3

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

The Decision Variable

f(xi+1, yi+ ½ + e) = 0 (point on line)
= b(xi + 1) - a(yi + ½ + e)
= b(xi + 1) - a(yi + ½) – ae
= f(xi + 1, yi + ½) - ae

Let di = f(xi + 1, yi + ½) = ae; di is known as the decision variable.
Since a ≥ 0, di has the same sign as e.

Therefore, we only need to know the value of di to choose between
pixels E and NE. If di ≥ 0 choose NE, else choose E.

But, calculating di directly each time requires at least two adds, a
subtract, and two multiplies -> too slow!

f(xi + 1, yi + ½) = ae

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Decision Variable calculation
Algorithm:

Calculate d0 directly, then for each i >= 0:
if di ≥ 0 Then

Choose NE = (xi + 1, yi + 1) as next point
di+1 = f(xi+1 + 1, yi+1 + ½) = f(xi + 1 + 1, yi + 1 + ½)

= b(xi + 1 + 1) - a(yi + 1 + ½) = f(xi + 1, yi + ½) + b - a
= di + b - a

else
Choose E = (xi + 1, yi) as next point
di+1 = f(xi+1 + 1, yi+1 + ½) = f(xi + 1 + 1, yi + ½)

= b(xi + 1 + 1) - a(yi + ½) = f(xi + 1, yi + ½) + b
= di + b

Knowing di, we need only add a constant term to find di+1 !

4

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

The initial value for the decision variable, d0, may be calculated directly from the
formula at point (0,0).
d0 = f(0 + 1, 0 + 1/2) = b(1) - a(1/2) = b - a/2

Therefore, the algorithm for a line from (0,0) to (a,b) in the first quadrant is:

x = 0;
y = 0;
d = b - a/2;
for(i = 0; i < a; i++) {

Plot(x,y);
if (d ≥ 0) {

x = x + 1;
y = y + 1;
d = d + b - a;

}

else {
x = x + 1;
d = d + b

}
}

Fast Line Algorithm

Note that the only non-integer value is a/2. If we then multiply by 2 to get d' = 2d, we can do all
integer arithmetic. The algorithm still works since we only care about the sign, not the value
of d.

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Bresenham’s Line Algorithm
We can also generalize the algorithm to work for lines beginning at points

other than (0,0) by giving x and y the proper initial values. This results in
Bresenham's Line Algorithm.

{Bresenham for lines with slope between 0 and 1}
a = ABS(xend - xstart);
b = ABS(yend - ystart);
d = 2*b - a;
Incr1 = 2*(b-a);
Incr2 = 2*b;
if (xstart > xend) {

x = xend;
y = yend

}
else {

x = xstart;
y = ystart

}

for (i = 0; i<a; i++){
Plot(x,y);
x = x + 1;
if (d ≥ 0) {

y = y + 1;
d = d + incr1;

}
else

d = d + incr2;
}

}

5

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Optimizations

• Speed can be increased even more by detecting cycles in the decision variable. These
cycles correspond to a repeated pattern of pixel choices.

• The pattern is saved and if a cycle is detected it is repeated without recalculating.

11 12 13 14 15 16 17

9

10

11

12

13

14

15

16

6 7 8 9 10

di= di= 2 2 --6 6 6 6 --2 102 10 2 2 --6 6 6 6 --2 102 10

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Line Rendering References
Bresenham, J.E., "Ambiguities In Incremental Line Rastering," IEEE

Computer Graphics And Applications, Vol. 7, No. 5, May 1987.

Eckland, Eric, "Improved Techniques For Optimising Iterative Decision-
Variable Algorithms, Drawing Anti-Aliased Lines Quickly And Creating
Easy To Use Color Charts," CSC 462 Project Report, Department of
Computer Science, North Carolina State University (Spring 1987).

Foley, J.D. and A. Van Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley 1982.

Newman, W.M and R.F. Sproull, Principles Of Interactive Computer
Graphics, McGraw-Hill, 1979.

6

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Polygon Scan Conversion

• Scan Conversion = Fill
• How to tell inside from outside

• Convex easy
• Nonsimple difficult
• Odd even test

• Count edge crossings

• Winding number odd-even fill

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Filling in the Frame Buffer
• Fill at end of pipeline
• If a point is inside a polygon color it with the inside (polygon) color
• Three approaches:

• Flood fill, Scan line fill, Odd-Even fill

• Polygon type matters:
• Convex polygons preferred, non-convex polygons assumed to have been

tessellated

• Shades (colors) have been computed for vertices (Gouraud shading)
• Combine with depth test: z-buffer algorithm

• March across scan lines interpolating shades
• Incremental work small

7

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Winding Number

• Count clockwise encirclements of point

• Alternate definition of inside: inside if winding number ≠ 0

winding number = 2

winding number = 1

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Inside Polygon Test
Inside test: A point P is inside a polygon if and only if a scanline intersects

the polygon edges an odd number of times moving from P in either
direction.

31 2
1

Does the
vertex count
as two points?

Or should it
count as
one point?

Problem when scan line crosses a vertex:

8

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Max-Min Test
When crossing a vertex, if the vertex is a local maximum or minimum

then count it twice, else count it once.

Count onceCount twice

oror

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Polygons
• A polygon is a many-sided planar figure

composed of vertices and edges.
• Vertices are represented by points (x,y).
• Edges are represented as line segments which

connect two points, (x1,y1) and (x2,y2).

• Convex Polygon:
• For any two points P1, P2 inside the polygon, all

points on the line segment which connects P1 and P2
are inside the polygon.

• All points P = uP1 + (1-u)P2, u in [0,1] are inside the
polygon provided that P1 and P2 are inside the
polygon.

• Concave Polygon
• A polygon which is not convex.

• Simple Polygons
• Polygons whose edges do not cross.

• Non simple Polygons
• Polygons whose edges cross.
• E.g., two different OpenGL implementations may

render non simple polygons differently. OpenGL does
not check if polygons are simple.

P = { (xi , yi) } i=1,n

E3

(x3,y3)

E2

(x2,y2)E1(x1,y1)

9

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Flood Fill
• Fill can be done recursively if we know a seed point located inside (WHITE)
• Scan convert edges into buffer in edge/inside color (BLACK)

flood_fill(int x, int y) {
if(read_pixel(x,y)= = WHITE) {

write_pixel(x,y,BLACK);
flood_fill(x-1, y);
flood_fill(x+1, y);
flood_fill(x, y+1);
flood_fill(x, y-1);

} }

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

• Fill the polygon 1 scan line at a time
• Determine which pixels on each scan line are inside the polygon

• set those pixels to the appropriate value.
• Key idea: Don’t check each pixel for “inside-ness”. Instead, look only for

those pixels at which changes occur.

• C1 C2 C3 specified by lighting equation
• e.g., OpenGL: glColor or by vertex shading

• C4 determined by interpolating between C1 and C2
• C5 determined by interpolating between C2 and C3
• interpolate between C4 and C5 along span: bilinear interpolation

Using Interpolation

span

C1

C3

C2

C5

C4
scan line

10

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Scan-Line Fill
• Can also fill by maintaining a data

structure of all intersections of polygons
with scan lines

• Sort by scan line
• Fill each span

vertex order generated
by vertex list

desired order

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Scan-Line Algorithm
For each scan line:
1. Find the intersections of the scan line with

all edges of the polygon.
2. Sort the intersections by increasing x-

coordinate.
3. Fill in all pixels between pairs of

intersections.

Problem:
Calculating intersections is slow.
Solution:
Incremental computation / coherence

For scan line number 8 the sorted list
of x-coordinates is (2,4,9,13)
(b and c are initially no integers)

Therefore fill pixels with x-
coordinates 2-4 and 9-13.

11

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Filling using line drawings
• Information about “interior” is missing
• Pixels are choosen which are near the desired line
• Strategy adds some extra pixels which are not located inside the polygon

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Edge Coherence
• Observation: Not all edges intersect each scanline.
• Many edges intersected by scanline i will also be intersected by

scanline i+1

• Formula for scanline s is y = s, for an edge is y = mx + b
• Their intersection is

s = mxs + b --> xs = (s-b)/m
• For scanline s + 1,

xs+1 = (s+1 - b)/m = xs + 1/m

Incremental calculation: xs+1 = xs + 1/m

12

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Processing Polygons
• Polygon edges are sorted according to their minimum / maximum Y.
• Scan lines are processed in increasing (upward) / decreasing (downward) Y order.
• When the current scan line reaches the lower / upper endpoint of an edge it

becomes active.
• When the current scan line moves above the upper / below the lower endpoint,

the edge becomes inactive.
Active Edges

Not yet active edges

Ignored horizontal edge

Finished edge

• Active edges are sorted according to increasing X. Filling the scan line
starts at the leftmost edge intersection and stops at the second. It
restarts at the third intersection and stops at the fourth. . . (spans)

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Polygon fill rules
(to ensure consistency)

1. Horizontal edges: Do not include in edge table
2. Horizontal edges: Drawn either on the bottom or on the top.
3. Vertices: If local max or min, then count twice, else count

once.
4. Either vertices at local minima or at local maxima are drawn.
5. Only turn on pixels whose centers are interior to the polygon:

round up values on the left edge of a span, round down on
the right edge

13

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Polygon fill example

19 NULL
18 NULL
17 NULL
16 NULL
15 NULL
14 NULL
13 NULL
12 -> 15 8 -2 -> 18 8 4/3 NULL
11 NULL
10 NULL

9 NULL
8 NULL
7 NULL
6 -> 18 16 0 NULL
5 NULL
4 NULL
3 -> 15 2 0 NULL
2 NULL
1 -> 3 8 -3 -> 6 8 8/5 NULLB (8,1)

A (2,3)

F (2,15)

D (16,18)

E (8,12)

C (16,6)

• The edge table (ET) with edges entries sorted in increasing y and x of the lower end.
• ymax: max y-coordinate of edge
• xmin: x-coordinate of lowest edge point
• 1/m: x-increment used for stepping

from one scan line to the next

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

1. Set y to smallest y with entry in ET,
i.e., y for the first non-empty bucket

2. Init Active Edge Table (AET) to be empty
3. Repeat until AET and ET are empty:

1. Move form ET bucket y to the AET those edges whose ymin=y (entering edges)
2. Remove from AET those edges for which y=ymax (not involved in next scan line), then

sort AET (remember: ET is presorted)
3. Fill desired pixel values on scan line y by using pairs of x-coords from AET
4. Increment y by 1 (next scan line)
5. For each nonvertical edge remaining in AET, update x for new y

Processing steps

9 2 0 9 2 -5/2

FA EFAET pointer

11 12 6/4 11 13 0 λ

DE CDAET pointer

11 10 6/4

DE

11 13 0 λ

CD

ymax x 1/m

scan line 9:

scan line 10:

14

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Aliasing
• Aliasing is caused by finite addressability of the display.
• Approximation of lines and circles with discrete points often

gives a staircase appearance or "Jaggies".
• Ideal rasterized line should be 1 pixel wide

• Choosing best y for each x (or visa versa) produces aliased
raster lines

Desired line

Aliased rendering of the line

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Aliasing / Antialiasing
Examples

15

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Antialiasing - solutions
• Aliasing can be smoothed out by using higher addressability.
• If addressability is fixed but intensity is variable, use the intensity to control the

address of a "virtual pixel".
• Two adjacent pixels can be be used to give the impression of a point part way between

them.
• The perceived location of the point is dependent upon the ratio of the intensities used at

each.
• The impression of a pixel located halfway between two addressable points can be given

by having two adjacent pixels at half intensity.
• An antialiased line has a series of virtual pixels each located at the proper address.

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Antialiasing by Area Averaging
• Color multiple pixels for each x depending on
coverage by ideal line

original antialiased

magnified

16

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Polygon Aliasing

• Aliasing problems can be serious for polygons
• Jaggedness of edges
• Small polygons neglected
• Need compositing so color
of one polygon does not
totally determine color of
pixel

All three polygons should contribute to color

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Antialiased Bresenham Lines
• Line drawing algorithms such as Bresenham's can easily be modified to

implement virtual pixels. We use the distance (e = di/a) value to determine
pixel intensities.

• Three possible cases which occur during the Bresenham algorithm:

AA

B

C

e

B

C

e

A

B

C

e

A = 0.5 + e
B = 1 - abs(e+0.5)
C = 0

A = 0.5 + e
B = 1 - abs(e+0.5)
C = 0

A = 0
B = 1 - abs(e+0.5)
C = -0.5 - e

e > 0 0 > e > -0.5 e < -0.5

17

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Clipping and Visibility

• Clipping has much in common with hidden-
surface removal

• In both cases, we are trying to remove objects
that are not visible to the camera

• Often we can use visibility or occlusion testing
early in the process to eliminate as many
polygons as possible before going through the
entire pipeline

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Hidden Surface Removal
• Object-space approach: use pairwise testing
between polygons (objects)

• Worst case complexity O(n2) for n polygons
partially obscuring can draw independently

18

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Painter’s Algorithm

• Render polygons a back to front order so that
polygons behind others are simply painted over

B behind A as seen by viewer Fill B then A

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Depth Sort

• Requires ordering of polygons first
• O(n log n) calculation for ordering
• Not every polygon is either in front or behind all other
polygons

• Order polygons and deal with
easy cases first, harder later

Polygons sorted by
distance from COP

19

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Depth sort cases
• Easy cases:

• Lies behind all other polygons (can render):
• Polygons overlap in z but not in either x or y

(can render independently):

• Hard cases:
Overlap in all
directions but can
one is fully on one
side of the other cyclic overlap penetration

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Back-Face Removal (Culling)

θ
•face is visible iff 90 ≥ θ ≥ -90
equivalently cos θ ≥ 0
or v • n ≥ 0

•plane of face has form ax + by +cz +d =0
but after normalization n = (0 0 1 0)T

•need only test the sign of c

•In OpenGL we can simply enable culling
but may not work correctly if we have nonconvex objects

20

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Image Space Approach

• Look at each projector (nm for an n x m frame
buffer) and find closest of k polygons

• Complexity O(nmk)
• Ray tracing
• z-buffer

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

z-Buffer Algorithm
• Use a depth buffer called the z-buffer

to store the depth of the closest object
at each pixel found so far

• As we render each polygon, compare the
depth of each pixel to depth in z buffer

• If less, place shade of pixel in color
buffer and update z buffer

• Efficency:
• If we work scan line by scan line as we

move across a scan line,
the depth changes
satisfy a∆x+b∆y+c∆z=0

• Along scan line
• In screen space ∆x = 1

xc
azy ∆−=∆=∆ ,0

21

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Scan-Line Algorithm

• Can combine shading and hsr through scan
line algorithm

scan line i: no need for depth
information, can only be in no
or one polygon

scan line j: need depth
information only when in
more than one polygon

Realtime 3D Computer Graphics / Virtual Reality – WS 2005/2006 – Marc Erich Latoschik

Visibility Testing
• In realtime applications, eliminate as many objects as possible within the

application
• Reduce burden on pipeline
• Reduce traffic on bus

• Partition space with Binary Spatial Partition (BSP) Tree

• Easy example: Consider 6 parallel polygons. The
plane of A separates B and C from D, E and F

• Can continue recursively
• Plane of C separates B from A
• Plane of D separates E and F

• Can put this information in a BSP tree
• Use for visibility and occlusion testing

top view

B C
A

E

D

F

